Exponential Stability of Discrete Time Filters for Bounded Observation Noise
نویسنده
چکیده
This paper proves exponential asymptotic stability of discrete-time filters for the estimation of solutions to stochastic difference equations, when the observation noise is bounded. No assumption is made on the ergodicity of the signal. The proof uses the Hilbert projective metric, introduced into filter stability analysis by Atar and Zeitouni [1], [2]. It is shown that when the signal noise is sufficiently regular, boundedness of the observation noise implies that the filter update operation is, on average, a strict contraction with respect to the Hilbert metric. Asymptotic stability then follows.
منابع مشابه
Exponential Stability in Discrete Time Filtering for Non-Ergodic Signals
In this paper we prove exponential asymptotic stability for discrete time filters for signals arising as solutions of d-dimensional stochastic difference equations. The observation process is the signal corrupted by an additive white noise of sufficiently small variance. The model for the signal admits non-ergodic processes. We show that almost surely, the total variation distance between the o...
متن کاملAdmissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملDiscrete Time Nonlinear Filters with Regular Observations Are Always Stable
Abstract. The nonlinear filter associated with the discrete time signal-observation model (Xk, Yk) is known to forget its initial condition as k → ∞ regardless of the observation structure when the signal possesses sufficiently strong ergodic properties. Conversely, it stands to reason that if the observations are sufficiently informative, then the nonlinear filter should forget its initial con...
متن کاملDiscrete Time Nonlinear Filters with Informative Observations Are Stable
Abstract The nonlinear filter associated with the discrete time signal-observation model (Xk,Yk) is known to forget its initial condition as k →∞ regardless of the observation structure when the signal possesses sufficiently strong ergodic properties. Conversely, it stands to reason that if the observations are sufficiently informative, then the nonlinear filter should forget its initial condit...
متن کاملOn Global Exponential Stability of Discrete-Time Hopfield Neural Networks with Variable Delays
Global exponential stability of a class of discrete-time Hopfield neural networks with variable delays is considered. By making use of a difference inequality, a new global exponential stability result is provided. The result only requires the delay to be bounded. For this reason, the result is milder than those presented in the earlier references. Furthermore, two examples are given to show th...
متن کامل